1,180 research outputs found

    CLASSIFICATION OF GRATUITOUS TRANSFERS

    Get PDF

    Does it measure up? A comparison of pollution exposure assessment techniques applied across hospitals in England

    Get PDF
    Weighted averages of air pollution measurements from monitoring stations are commonly assigned as air pollution exposures to specific locations. However, monitoring networks are spatially sparse and fail to adequately capture the spatial variability. This may introduce bias and exposure misclassification. Advanced methods of exposure assessment are rarely practicable in estimating daily concentrations over large geographical areas. We propose an accessible method using temporally adjusted land use regression models (daily LUR). We applied this to produce daily concentration estimates for nitrogen dioxide, ozone, and particulate matter in a healthcare setting across England and compared them against geographically extrapolated measurements (inverse distance weighting) from air pollution monitors. The daily LUR estimates outperformed IDW. The precision gains varied across air pollutants, suggesting that, for nitrogen dioxide and particulate matter, the health effects may be underestimated. The results emphasised the importance of spatial heterogeneity in investigating the societal impacts of air pollution, illustrating improvements achievable at a lower computational cost

    Survey of Stormwater BMP Maintenance Practices

    Get PDF
    Many stormwater management manuals and guidance documents have stated the importance and estimated frequency of maintenance for stormwater best management practices (BMPs), but few have documented the actual frequency and intensity of maintenance required to maintain a desired level of performance and efficiency. Increased attention to mass balance, numerical goals, total maximum daily loads (TMDLs), and non-degradation requirements has created the need for more emphasis on BMP maintenance in order to meet permitting and reporting requirements. The purpose of this paper is to advance short and long-term maintenance considerations so as to develop more realistic maintenance plans. To do so, we conducted a national literature search for maintenance costs and developed, distributed, analyzed the results of a detailed municipal public works survey. The specific goals of the survey were to identify and inventory stormwater BMP O&M efforts and costs. Survey questionnaires were sent to 106 cities with 28 responses received. The survey related to the following topics: number of BMPs in the city, frequency of BMP inspections, average staff-hours spent per routine inspection/maintenance, complexity of BMP maintenance, most frequent causes of performance deterioration within BMPs, and cost of non-routine maintenance activities. The results of the survey revealed that most (89%) cities perform routine maintenance once per year or less. Staff-hours per year ranged from one to four hours for most stormwater BMPs and but were significantly more for rain gardens (one to sixteen hours per year) and wetlands (one to nine hours per year). The most common causes of performance deterioration were sediment buildup and litter/debris for most stormwater BMPs. Respondents indicated that the removal of accumulated sediment incurred the largest cost of all BMP maintenance activities

    Cycling injury risk in London: A case-control study exploring the impact of cycle volumes, motor vehicle volumes, and road characteristics including speed limits.

    Get PDF
    Cycling injury risk is an important topic, but few studies explore cycling risk in relation to exposure. This is largely because of a lack of exposure data, in other words how much cycling is done at different locations. This paper helps to fill this gap. It reports a case-control study of cycling injuries in London in 2013-2014, using modelled cyclist flow data alongside datasets covering some characteristics of the London route network. A multilevel binary logistic regression model is used to investigate factors associated with injury risk, comparing injury sites with control sites selected using the modelled flow data. Findings provide support for 'safety in numbers': for each increase of a natural logarithmic unit (2.71828) in cycling flows, an 18% decrease in injury odds was found. Conversely, increased motor traffic volume is associated with higher odds of cycling injury, with one logarithmic unit increase associated with a 31% increase in injury odds. Twenty-mile per hour compared with 30mph speed limits were associated with 21% lower injury odds. Residential streets were associated with reduced injury odds, and junctions with substantially higher injury odds. Bus lanes do not affect injury odds once other factors are controlled for. These data suggest that speed limits of 20 mph may reduce cycling injury risk, as may motor traffic reduction. Further, building cycle routes that generate new cycle trips should generate 'safety in numbers' benefits

    Evolution and breakup of viscous rotating drops

    Get PDF
    We study the evolution of a viscous fluid drop rotating about a fixed axis at constant angular velocity OmegaOmega or constant angular momentum L surrounded by another viscous fluid. The problem is considered in the limit of large Ekman number and small Reynolds number. The analysis is carried out by combining asymptotic analysis and full numerical simulation by means of the boundary element method. We pay special attention to the stability/instability of equilibrium shapes and the possible formation of singularities representing a change in the topology of the fluid domain. When the evolution is at constant OmegaOmega, depending on its value, drops can take the form of a flat film whose thickness goes to zero in finite time or an elongated filament that extends indefinitely. When evolution takes place at constant L and axial symmetry is imposed, thin films surrounded by a toroidal rim can develop, but the film thickness does not vanish in finite time. When axial symmetry is not imposed and L is sufficiently large, drops break axial symmetry and, depending on the value of L, reach an equilibrium configuration with a 2-fold symmetry or break up into several drops with a 2- or 3-fold symmetry. The mechanism of breakup is also describe

    Weather in stellar atmosphere: the dynamics of mercury clouds in alpha Andromedae

    Full text link
    The formation of long-lasting structures at the surfaces of stars is commonly ascribed to the action of strong magnetic fields. This paradigm is supported by observations of evolving cool spots in the Sun and active late-type stars, and stationary chemical spots in the early-type magnetic stars. However, results of our seven-year monitoring of mercury spots in non-magnetic early-type star alpha Andromedae show that the picture of magnetically-driven structure formation is fundamentally incomplete. Using an indirect stellar surface mapping technique, we construct a series of 2-D images of starspots and discover a secular evolution of the mercury cloud cover in this star. This remarkable structure formation process, observed for the first time in any star, is plausibly attributed to a non-equilibrium, dynamical evolution of the heavy-element clouds created by atomic diffusion and may have the same underlying physics as the weather patterns on terrestrial and giant planets.Comment: 10 pages, 2 figures; to be published in Nature Physic

    Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring.

    Get PDF
    Land-use regression (LUR) models for ultrafine particles (UFP) and Black Carbon (BC) in urban areas have been developed using short-term stationary monitoring or mobile platforms in order to capture the high variability of these pollutants. However, little is known about the comparability of predictions of mobile and short-term stationary models and especially the validity of these models for assessing residential exposures and the robustness of model predictions developed in different campaigns. We used an electric car to collect mobile measurements (n = 5236 unique road segments) and short-term stationary measurements (3 Ă— 30min, n = 240) of UFP and BC in three Dutch cities (Amsterdam, Utrecht, Maastricht) in 2014-2015. Predictions of LUR models based on mobile measurements were compared to (i) measured concentrations at the short-term stationary sites, (ii) LUR model predictions based on short-term stationary measurements at 1500 random addresses in the three cities, (iii) externally obtained home outdoor measurements (3 Ă— 24h samples; n = 42) and (iv) predictions of a LUR model developed based upon a 2013 mobile campaign in two cities (Amsterdam, Rotterdam). Despite the poor model R(2) of 15%, the ability of mobile UFP models to predict measurements with longer averaging time increased substantially from 36% for short-term stationary measurements to 57% for home outdoor measurements. In contrast, the mobile BC model only predicted 14% of the variation in the short-term stationary sites and also 14% of the home outdoor sites. Models based upon mobile and short-term stationary monitoring provided fairly high correlated predictions of UFP concentrations at 1500 randomly selected addresses in the three Dutch cities (R(2) = 0.64). We found higher UFP predictions (of about 30%) based on mobile models opposed to short-term model predictions and home outdoor measurements with no clear geospatial patterns. The mobile model for UFP was stable over different settings as the model predicted concentration levels highly correlated to predictions made by a previously developed LUR model with another spatial extent and in a different year at the 1500 random addresses (R(2) = 0.80). In conclusion, mobile monitoring provided robust LUR models for UFP, valid to use in epidemiological studies
    • …
    corecore